Overlay Technologies for Wear and Corrosion Applications

Matthew Yarmuch, MSc, EIT
Materials & Welding Engineer
Advanced Materials

IPEIA Conference, Banff, AB
Friday, February 16, 2007
Presentation Outline

• Introduction to ARC
• Wear and Corrosion Applications
• Engineering Solutions to Wear/Corrosion
• Overlay Technologies
• Thermal and Plasma Spray Processes
• Welded Overlay/Cladding Processes
• Case Studies
 – Flue Gas Desulphurization Unit - Cladding & Overlay Welding
 – Development of an Impact Test Rig for Overlay Materials
• Conclusion
• Acknowledgments and References
The Alberta Research Council

- **Canada’s 1st provincial research organization (1921)**
 - 500 employees with $80M annual operating budget
 - Locations at Edmonton, Calgary, Devon & Vegreville

- **Advanced Materials Business Unit**
 - 26 Staff (including 13 PhD’s, 2MSc’s)
 - R&D and Technical Services for:
 - Oilfield & Oil Sands
 - Pipeline, Manufacturing, & Infrastructure
 - Transportation (automotive & aerospace)
 - Alternative Energy
 - Areas of Expertise:
 - Mechanical Testing
 - Wear & Corrosion
 - Welding & Failure Investigations
 - Non-Metallics
 - Computer Modelling (FEA, CFD)
Overview of Wear & Corrosion
Mechanisms and Applications

Overlay Technologies for Wear and Corrosion Applications
Introduction to Tribology & Wear

- **Definition of Tribology**:
 - “The science and technology of interacting surfaces in relative motion” [Ref 1]
 - Includes consideration of friction, wear, and lubrication

- **Industrial Wear**
 - No uniform designation system for wear mechanisms
 - Wear mechanisms are very application specific
 - A “hard surface” does not always equal optimum wear resistance - other factors must be considered
Overview of Wear Mechanisms

WEAR

- Abrasion (Two or Three-body)
 - Low stress
 - High stress
 - Slurry
 - Gouging
 - Polishing
 - Sliding

- Erosion
 - Solid impingement
 - Fluid impingement
 - Cavitation
 - Slurry Erosion
 - High Temperature

- Adhesion
 - Fretting
 - Adhesive
 - Seizure
 - Galling
 - Oxidation wear

- Surface Fatigue
 - Pitting
 - Spalling
 - Impact
 - Brinelling
 - Contact
 - Delamination
 - Percussive

- Corrosion – Assisted
 - Uniform
 - Galvanic
 - Pitting
 - Crevice
 - Environmental\(^{(a)}\)
 - Oxidation
 - High-temp

Mechanism
- Require interaction between sharp or hard surfaces on softer surfaces
- Require fluid or slurry action
- Interaction between mating surfaces
- Require repetitive, cyclic stresses
- Synergistic effect that accelerates wear

NOTE (a): Environmental corrosion includes stress-corrosion cracking (SCC), hydrogen embrittlement, microbial assisted corrosion, etc.

References: [1,2,3,4,5,6,7]
Introduction to Corrosion

• **NACE Definition:**
 - “The deterioration of a material, usually a metal, that results from a reaction with its environment”

• **Occurrence of Corrosion is Application Specific**
 - Hydrotransport of Oil Sands – erosion-corrosion
 - Upstream & Upgrading – CO₂/H₂S corrosion
 - Refineries – Stress Corrosion Cracking

• **Factors Affecting Corrosion**
 - **Materials** – type, microstructure, flaws
 - **Stress** – magnitude, static/dynamic
 - **Geometry** – stress concentrations, design
 - **Temperature** – surface temperature
 - **Time** – service or material properties changes
 - **Environment** - corrodent concentration, fluid velocity, wear, phases, deposits
Introduction to Corrosion

• No internationally accepted *Corrosion Mechanism* designation system
 – “Original 8”: Uniform, galvanic, crevice, pitting, intergranular, selective leaching, erosion-corrosion, and stress corrosion
 – Four Intrinsic Corrosion Modes:

 - Uniform Corrosion
 - Pitting (localized) Corrosion
 - Intergranular Corrosion
 - Stress Corrosion Cracking

Ref [8,9]

Corrosion Mechanisms

Complex corrosion mechanisms, such as stress corrosion cracking, require a combination of factors.

ENVIRONMENTALLY INFLUENCED
- Stress Corrosion Cracking
- Liquid Metals
- Molten Salts
- Aqueous, Non-Aqueous, Gases
- Pitting/Crevvice
- Corrosion Under Insulation
- Corrosion Under Deposits
- Filiform
- Condensate Corrosion
- Microbial Assisted Corrosion
- Hydrogen Damage (Blisters & Cracks)

METALLURGICAL
- Galvanic
- Intergranular
- Sensitization/Knife-Line
- Dealloying/Selective Leaching
- Exfoliation

MECHANICALLY ASSISTED
- Stress-Corrosion Cracking
- Corrosion Fatigue
- Corrosive Wear
- Erosion-Corrosion
- Fretting Corrosion
- Impingement/Cavitation

References: [6,8,9,10]
Solutions to Wear & Corrosion

Corrosion
- Modify service conditions
- Materials selection & upgrades
 - Corrosion resistant alloys (CRA)
- Corrosion inhibitors
- Cathodic protection
- Anodic protection
- Design, inspection & maintenance

Wear
- Modify service conditions
- Materials selection & upgrades
 - Wear resistant materials (WRM)
- Design & operate for wear
 - Identify actual mechanism(s)
 - Appropriate component design
 - Periodic replacement

Surfacing Techniques
- Surface treatment
- Overlay techniques
- Cladding techniques

![PTA overlay welding](PTA_overlay_welding)
Surfacing and Overlay Techniques

- **Two broad categories:** *surface treatments* & *surface coatings*
 - **Surface treatments**
 - Inherent substrate composition is used to obtain desired properties
 - Diffusion of elements into surface, e.g. carbon or nitrogen for hardening
 - **Surface coatings**
 - Deposit & form a new surface onto a substrate backing
 - Coating properties dictate component’s function and lifespan

<table>
<thead>
<tr>
<th>Surface Processes and Treatments</th>
<th>References: [3,4,11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Treatments</td>
<td>Surface Coatings</td>
</tr>
<tr>
<td>Nitriding</td>
<td>Chemical Treatments</td>
</tr>
<tr>
<td>Carburising</td>
<td>Plastic Coating</td>
</tr>
<tr>
<td>Nitrocarburizing</td>
<td>Carbonitriding</td>
</tr>
<tr>
<td>Metallizing</td>
<td>Boronizing</td>
</tr>
<tr>
<td>Thermal Hardening</td>
<td>(Induction, Flame, Laser)</td>
</tr>
<tr>
<td>Thermal/Plasma Spraying</td>
<td></td>
</tr>
</tbody>
</table>
Overlay Technologies for Wear and Corrosion Applications

Thermal Spray Techniques
Technologies, Applications, and Comparisons
Thermal Spray Techniques

- **Spray Surfacing Fundamentals**
 - Surfacing materials are melted, propelled at high velocity and mechanically bond to substrate
 - Low surface temperatures < 200ºC
 - Substrates: metallic & non-metallic

- **Typical Flaws:** voids, oxidized or un-melted particles
- **Mechanical Bond:** can limit applications
- **Large variety of applicable materials**

References: [4,5,12,13]
Thermal Spray Techniques

Gas Combustion Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy-fuel wire (OFW)</td>
<td>Oxy-fuel rod</td>
</tr>
<tr>
<td>Oxy-fuel powder (OFP)</td>
<td>Oxy-fuel jet powder</td>
</tr>
<tr>
<td>Detonation gun (D-Gun)</td>
<td>High-velocity oxyfuel (HVOF)</td>
</tr>
</tbody>
</table>

Arc/Plasma Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma arc powder (PA)</td>
<td>Electric arc wire (EAW)</td>
</tr>
<tr>
<td>Atmospheric plasma spraying</td>
<td>Inert Plasma Spraying (IPS)</td>
</tr>
<tr>
<td>(APS)</td>
<td></td>
</tr>
<tr>
<td>Vacuum Plasma Spraying</td>
<td></td>
</tr>
<tr>
<td>(VPS)</td>
<td></td>
</tr>
<tr>
<td>Low Pressure Plasma Spraying</td>
<td></td>
</tr>
<tr>
<td>(LPPS)</td>
<td></td>
</tr>
<tr>
<td>High-Power Plasma Spraying</td>
<td></td>
</tr>
<tr>
<td>(HPPS)</td>
<td></td>
</tr>
<tr>
<td>Cold Spraying</td>
<td></td>
</tr>
</tbody>
</table>

Process selection considerations

- Surface quality, productivity, costs
- Often subtle differences, e.g. plasma spray variants
- Selection guidelines: Industrial handbooks, standard practices, & texts

Techniques common for pressure equipment:

- OFW/OFP, electric arc, plasma spray and HVOF

References: [3,4,5,12,13,14]
Oxy-Fuel Spray Processes

Oxy-Fuel Process Overview
- Fuel mixtures: acetylene, MAPP, propane, natural gas & hydrogen
- Air stream – atomizes consumables
- Combustion energy & resulting gas pressure dictates particle velocity
- High heat input process – consumables & substrate

Oxy-fuel wire spray
- Also called wire flame spraying & combustion wire process
- Low capital cost
- Large range of consumables

Oxy-fuel powder spray
- Process similar to wire spraying
- Powder feed allows for wider range of consumable, i.e. carbides & complex mixtures

References: [4,12,13,14]
High Velocity Oxy-Fuel (HVOF)

- **HVOF Process Overview**
 - **State-of-the-art** in fuel-gas processes
 - Extremely high kinetic energy
 - Supersonic nozzle flame velocity (2100 m/s)
 - Particle velocities (up to 650 m/s)

 References: [4,12,13,14,15]

- **Spray materials must suit application & component**
 - Corrosion applications: exchanger tubesheets, amine units, boilers
 - Wear application: valve seats, pipe fittings

HVOF spraying of an Exchanger Tubesheet

WC-Co-Cr coating produced via HVOF

HVOF Shock Diamonds

www.materials.drexel.edu
Electric Arc Wire Spraying

EAW Process Overview
- Electric arc temp > 5500ºC (10,000ºF)
- Air stream atomizes & sprays melted wire

- Wire speeds control deposition rates
- Environment: inert gases or vacuum
- Energy efficient process
 - Energy used directly to melt wires
 - Low substrate temperatures

Twin Wire - Development of New Surfacing Materials

- Metal Matrix Wire (e.g., Fe, Ni, Co)
- Composite Wire (e.g., carbides, borides)
- MMC Coating

References: [4,5,12,13]
Plasma Arc (PA) Spraying

• **PA Process Overview**
 – Constricted arc process: plasma temps of 10,000-20,000°C
 – Carrier gas mixtures of Ar, He, N₂ and/or H₂ transports powder
 – High-energy plasma jet propels consumables
 – Similar to PTA welding (non-transferred mode)

• **Process Variants:**
 – Atmospheric Plasma Spraying (APS)
 – Inert Plasma Spraying (IPS)
 – Vacuum Plasma Spraying (VPS)
 – Low Pressure Plasma Spraying (LPPS)
 – UPS, HPPS & ‘cold spraying’ under development

References: [4,5,12,13,15]
Comparison of Spray Processes

Typical Operating Parameters & Productivity:

<table>
<thead>
<tr>
<th>Process</th>
<th>Gas flow</th>
<th>Flame/plasma temp</th>
<th>Particle impact velocity</th>
<th>Relative adhesive strength</th>
<th>Adhesive Strength</th>
<th>Inter-particle cohesive strength</th>
<th>Oxide content</th>
<th>Porosity</th>
<th>Relative process cost</th>
<th>Max. spray rate</th>
<th>Power</th>
<th>Energy required to melt</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFP</td>
<td>11 m³/h</td>
<td>2200 °C</td>
<td>30 m/s</td>
<td>3</td>
<td>8</td>
<td>Low</td>
<td>6</td>
<td>10-15</td>
<td>3</td>
<td>7 kg/h</td>
<td>25-75 kW</td>
<td>11-22</td>
</tr>
<tr>
<td>OFW</td>
<td>71 m³/h</td>
<td>2800 °C</td>
<td>180 m/s</td>
<td>4</td>
<td>10</td>
<td>Medium</td>
<td>4</td>
<td>10-15</td>
<td>3</td>
<td>9 kg/h</td>
<td>50-100 kW</td>
<td>11-22</td>
</tr>
<tr>
<td>EAW</td>
<td>71 m³/h</td>
<td>5500 °C</td>
<td>240 m/s</td>
<td>6</td>
<td>12</td>
<td>High</td>
<td>0.5-3</td>
<td>10</td>
<td>1</td>
<td>16 kg/h</td>
<td>4-6 kW</td>
<td>0.2-0.4</td>
</tr>
<tr>
<td>APS</td>
<td>4.2 m³/h</td>
<td>5500 °C</td>
<td>240 m/s</td>
<td>6</td>
<td>4 to <70</td>
<td>High</td>
<td>0.5-1</td>
<td>1-10</td>
<td>5</td>
<td>5 kg/h</td>
<td>30-80 kW</td>
<td>13-22</td>
</tr>
<tr>
<td>VPS</td>
<td>8.4 m³/h</td>
<td>8300 °C</td>
<td>240-610 m/s</td>
<td>9</td>
<td><70</td>
<td>Very high</td>
<td>ppm level</td>
<td><0.5</td>
<td>10</td>
<td>10 kg/h</td>
<td>50-100 kW</td>
<td>11-22</td>
</tr>
<tr>
<td>HVOF</td>
<td>28-57 m³/h</td>
<td>3100 °C</td>
<td>610-1060 m/s</td>
<td>8</td>
<td>>70</td>
<td>Very high</td>
<td>0.2</td>
<td>1-2</td>
<td>5</td>
<td>14 kg/h</td>
<td>100-270 kW</td>
<td>22-200</td>
</tr>
</tbody>
</table>

NOTE: (a.) 1 (low) to 10 (high)

References: [3,4,5,12,13,17,18,19]
Comparison of Spray Processes

Process contrasts & typical applications:

<table>
<thead>
<tr>
<th>Process</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Typical uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFP</td>
<td>Lowest-cost; light, compact equipment; pressurized powder feed for high rates</td>
<td>Lower bond strengths; higher porosity; lower cohesive strength; slow deposition rate</td>
<td>Machinery maintenance; gas turbine engines;</td>
</tr>
<tr>
<td>OFW</td>
<td>Inexpensive equipment and setup; optimizable for metallic coatings</td>
<td>Lower bond strengths; higher porosity; high heat transfer to substrate; n/a for high alloy or ceramics</td>
<td>Corrosion protection for bridges/tanks; machinery repair; dimensional restoration</td>
</tr>
<tr>
<td>EAW</td>
<td>Highest spray speed-deposition; large spray pattern (50-300 mm); mobile; low cost</td>
<td>Poor adhesive strength; high porosity and oxide content; expensive and complex equipment</td>
<td>Heavy coating buildup; large surfaces; corrosion protection</td>
</tr>
<tr>
<td>APS</td>
<td>High quality deposit; minimized oxidation; low porosity; portable</td>
<td>Many process parameters must be optimized; highest equipment costs; complex, bulky equipment</td>
<td>Cermet/MMC for wear; ceramics for turbines</td>
</tr>
<tr>
<td>VPS</td>
<td>Highest quality deposit; improved bonding; low porosity; high efficiency</td>
<td>Special coating material storage required; highest costs; workpiece limited by chamber size</td>
<td>Turbine airfoils, blade tips, shroud segments; refractory materials</td>
</tr>
<tr>
<td>HVOF</td>
<td>Highest bond strength; low porosity/oxide; thick coatings; good machinability; automation; low distortion</td>
<td>Capital investments; rocket-like hazardous torch; extremely loud process</td>
<td>Carbides; oxides; composites; repair; corrosion & wear protection</td>
</tr>
</tbody>
</table>

Process Selection:
- Consideration of process technical limitations and costs
- References and consulting available

References: [3,4,5,12,13,17,18,19]
Overlay Technologies for Wear and Corrosion Applications

Weld Overlay & Cladding Techniques
Technologies, Applications, and Comparisons
Cladding and Overlay Welding

Fundamentals:
- Metallurgical bond between surface & substrate
- Controlled arc environment = fewer flaws
- Manual, semi-automatic, fully-automatic/robotic

Cladding or Overlay Welding?
- Cladding:
 - Coating material bonded to a substrate via mechanical force
 - Clad & base material are not melted during fusion
 - Common for highly corrosive applications, e.g. reactors, vessels
- Overlay:
 - Fusion of a coating to a substrate surface via a welding process
 - Applicable for essentially all corrosion and wear applications
 - Overlay “restoration” welds used during clad fabrication projects
Weld Overlay & Cladding Processes

• **Process selection considerations**
 – Productivity, costs and applications
 – Consumable forms, i.e. wire, strip, powder, sheet (plate)
 – Selection guidelines: Industrial handbooks, standard practices, & texts

• **Common techniques for pressure equipment**
 – Overlay welding via manual & wire-feed processes, PTA overlay welding
 – Hot roll & explosive bonding

Arc Welding Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Tungsten Arc Welding (GTAW)</td>
<td></td>
</tr>
<tr>
<td>Gas Metal Arc Welding (GMAW)</td>
<td></td>
</tr>
<tr>
<td>Submerged Arc Welding (SAW)</td>
<td></td>
</tr>
</tbody>
</table>

Plasma Transferred Arc Welding (PTAW)

Other Fusion Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy/fuel gas (OFW)</td>
<td></td>
</tr>
<tr>
<td>Electron Beam Welding (EBW)</td>
<td></td>
</tr>
<tr>
<td>Furnace Brazing (FB)</td>
<td></td>
</tr>
<tr>
<td>Spray and Fuse (SF)</td>
<td></td>
</tr>
</tbody>
</table>

Laser Beam Welding (LBW)

Electroslag welding (ESW)

Explosive Welding (EW)

Cladding Techniques

<table>
<thead>
<tr>
<th>Plate</th>
<th>Pipe</th>
<th>Fittings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Roll Bonding</td>
<td>Seamless (extruded)</td>
<td>Hot Isostatic Pressing (HIP)</td>
</tr>
<tr>
<td>Cold Roll Bonding</td>
<td>Longitudinal seam</td>
<td>Manufactured from plate/pipe</td>
</tr>
<tr>
<td>Explosive Bonding</td>
<td>Explosive Bonding</td>
<td>Weld Overlay</td>
</tr>
<tr>
<td>Hot Pressing</td>
<td>Weld Overlay</td>
<td></td>
</tr>
</tbody>
</table>

References: [3,4,5,12,14,20]
Overview of Cladding Techniques

- **Hot Roll Bonding Process**
 - Typically produced by the “sandwich” technique
 - 85-90% of clad plate produced via hot roll bonding
 - Significant savings over solid CRA products

- **Common CRA materials with steel backing:**
 - Stainless steel, e.g. 316SS, 317SS, or duplex
 - Nickel alloys, e.g. Inconel 625, 825 or C-276
 - Titanium & specialty alloys

References: [20,29]
Overview of Cladding Techniques

- **Explosive Bonding**
 - High energy, explosive impulse drives and bonds metal layers together
 - Surface oxides are expelled = metallurgical bond
 - Bond line has characteristic “wavy” shape

- **Construction Materials**
 - Stainless steels, coppers and nickel alloys
 - Preferred technique for refractory metals, such as titanium, tantalum & zirconium

References: [20,29]; www.dynamicmaterials.com

25 ft by 120 ft Autoclave Leaching Vessels - 3 inch steel lined with 6mm titanium

Explosive Bonding Process
Overlay Welding Processes

- **Common wire-feed process**
 - Gas Metal Arc Welding (GMAW)
 - Submerged Arc Welding (SAW)
 - Flux Cored Arc Welding (FCAW)
 - Gas Tungsten Arc Welding (GTAW)
 with hot or cold wire addition

- **Areas of Development**
 - Overlay consumables
 - Wear – carbides in wire form
 - Corrosion – higher metallurgy
 - Motion control & robotic systems
 - Advanced processes & inverter power sources

Process considerations:
- Balance deposition rate & dilution
- Reactivity of base material & coating
- GMAW systems for vessel repairs & restorations;
 SMAW common for minor manual repairs
PTA Welding & Overlays

Process Fundamentals
- Constricted Arc Process:
 - High Current Density
 - High Temperature Profile
 - High Energy Density
- Semi-automated for small & large components
- Capital investments required

{\-century
 - High Deposition Rate
 - Low Dilution
 - Low degree of carbide degradation

NiCrSiBFe-WC overlay deposited by PTA – Exhibiting shear crack formation from repeated impacts
PTA Weld Overlaying

Areas of Development
- **Consumables**
 - Powder allows for complex metallurgies
 - Developments for wear & corrosion service (e.g., oil sands)
- **Process Investigations**
 - Effective heat input: current, voltage, motion, powder feed-rate
 - Gas mixtures
 - Torch designs
 - Automation and control systems

PTA welding of a MMC overlay

Carrier Gas Variations
Comparison of Overlay Welding

- Typical Operating Parameters & Productivity:

<table>
<thead>
<tr>
<th>Process</th>
<th>Deposit thickness (mm)</th>
<th>Deposition rate, kg/h</th>
<th>Dilution(a) %</th>
<th>Deposit efficiency, %</th>
<th>Consumable Material Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAW</td>
<td>1-1.5</td>
<td>0.5-2</td>
<td>1-5</td>
<td>85-95</td>
<td>Bare cast rod; tube rod; powder</td>
</tr>
<tr>
<td>SMAW</td>
<td>3</td>
<td>0.5-6</td>
<td>15-30</td>
<td>60-65</td>
<td>Flux covered cast/tube rod</td>
</tr>
<tr>
<td>GTAW</td>
<td>1-2</td>
<td>0.5-4</td>
<td>5-10</td>
<td>90-95</td>
<td>Bare cast rod; tube rod</td>
</tr>
<tr>
<td>PTAW</td>
<td>0.5-5</td>
<td>0.5-12</td>
<td>2-10</td>
<td>85-95</td>
<td>Powder; bare tube wire</td>
</tr>
<tr>
<td>GMAW</td>
<td>2</td>
<td>3-9</td>
<td>10-30</td>
<td>85-95</td>
<td>Bare tube wire; strip</td>
</tr>
<tr>
<td>FCAW</td>
<td>2</td>
<td>3-6</td>
<td>15-30</td>
<td>85-95</td>
<td>Cast/tube rod with internal flux</td>
</tr>
<tr>
<td>SAW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire</td>
<td>3</td>
<td>10-30</td>
<td>15-30</td>
<td>90-95</td>
<td>Bare tube wire (up to 4 simult.); strip; powder</td>
</tr>
<tr>
<td>Strip</td>
<td>3-5</td>
<td>10-40</td>
<td>10-25</td>
<td>90-95</td>
<td></td>
</tr>
<tr>
<td>LBW</td>
<td>0.5-6</td>
<td>0.5-1.5</td>
<td>3-15</td>
<td>85-95</td>
<td>Powder</td>
</tr>
</tbody>
</table>

Note (a): Acceptable single-pass levels of dilution are typically less than 15%.

References: [3,4,12,17,19,22,23,24,25,26,27,28]
Process contrasts & typical applications:

<table>
<thead>
<tr>
<th>Process</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Typical uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAW</td>
<td>Low dilution</td>
<td>Automation difficult; low deposition rate</td>
<td>Small area deposits on light sections</td>
</tr>
<tr>
<td>SMAW</td>
<td>Portability (field repair); simple setup/equipment; multiple positions</td>
<td>Slag removal; low deposition; limited materials</td>
<td>Multilayers on heavier sections</td>
</tr>
<tr>
<td>GTAW</td>
<td>Controllable heat input; high quality welds; amenable to automation</td>
<td>Relatively slow process; deposition rate low</td>
<td>Small components, low-dilution work</td>
</tr>
<tr>
<td>PTAW</td>
<td>Amenable to automation; high quality deposition; low deformation; narrow heat affected zone</td>
<td>Overspray (powder loss); complicated and expensive equipment</td>
<td>High-quality, small and large components</td>
</tr>
<tr>
<td>GMAW</td>
<td>Good deposition rates; amenable to automation</td>
<td>Relatively high dilution; bulky equipment setup</td>
<td>Faster than SMAW, no stub-end loss; positional work possible</td>
</tr>
<tr>
<td>FCAW</td>
<td>High deposition rates; Amenable to automation</td>
<td>Slag removal; low deposit efficiency; limited materials</td>
<td>Similar to GMAW; MMC wire</td>
</tr>
<tr>
<td>SAW</td>
<td>High deposition rate and efficiency; amenable to automation; variable electrical configurations</td>
<td>High heat input and dilution; limited material selection; horizontal position only</td>
<td>Heavy section work; Corrosion-resistant cladding of large areas</td>
</tr>
<tr>
<td>LBW</td>
<td>Amenable to automation; high quality deposition; low deformation; narrow heat affected zone</td>
<td>Very expensive equipment</td>
<td>High-quality, low-dilution work</td>
</tr>
</tbody>
</table>

References: [3,4,12,17,19,22,23,24,25,26,27,28]
Case Study: Alloy 59 for FGD Unit

- **Wet Flue Gas Desulfurization Unit – Syncrude UE-1**
 - Remove sulphur dioxide by reaction with ammonium sulfate
 - Also produces ammonium sulfite crystals (fertilizer product)
 - “Most corrosive application in Syncrude’s operations”

- **FGD Unit Design**
 - 70 ft diameter at bottom & 20 ft at top; total height of 310 ft
 - Carbon steel - Alloy 59 clad plates (770 t), solid Alloy 59, & FRP

- **Alloy 59**
 - Nickel-chromium-molybdenum alloy
 - Nicrofer® 5923 hMo - Alloy 59 (UNS N06059) manufactured by ThyssenKrupp VDM
 - Excellent corrosion resistance and thermal stability

References: [30,31]; Photograph credits: www.thyssenkruppvdm.com/
Case Study: Alloy 59 for FGD Unit

- Fabrication of the FGD Unit
 - Solid Alloy 59 plate
 - Clad plate by hot roll bonding
 - Backing Weld: SAW or GMAW
 - Clad Restoration: GMAW stringer beads

- Technical Challenges
 - Selection of welding processes & procedures
 - Corrosion testing – “Green Death” solution
 - Controlling weldment dilution – maintain corrosion resistance
 - Post Weld Heat Treatment (PWHT) requirements
 - Impurity & iron contamination
 - Source of in-service pitting
 - Proper handling and weld preparation techniques were required

References: [30,31]
Case Study: MMC Impact Tester

- **Abrasive & Impact Wear in Oil Sands**
 - Abrasion Test: ASTM G65 standard method
 - Impact Test: No method for assessing *only* impact properties

- **Suncor and ARC joint-development project**
 - Computer-aided model design → test rig commissioning
 - Low energy impact regime (5 – 10J)
 - Design parameters: rotational velocity, hammer weight, number of specimens & specimen spacing

Modeling of the Impact Rig
Case Study: MMC Impact Tester

- **Test Method Results:**
 - Reproducible test method for metallics and non-metallics
 - Determined key materials parameter affecting impact performance
 - WC-MMC overlays – matrix toughness
 - Chromium carbide overlays - carbide content
 - Polymers – failure mode unique for different grades

Detailed results to be published at NACE Corrosion 2007
Conclusions

• **Wear and Corrosion Applications**
 – Many possible synergistic modes and mechanisms
 – Preventative techniques are application specific

• **Thermal and Plasma Spray Processes**
 – Simple or sophisticated technologies
 – Mechanical bond can limit applications

• **Cladding Processes**
 – CRA cladding used many for corrosion applications
 – Overlay welding used for restoration welds and repairs

• **Overlay Processes**
 – Selection is largely influenced by quality and productivity
 – PTA is the process of choice for wear-resistant materials

• **Selection of overlay materials and the surfacing technique should be assessed on a case-by-case basis**
Acknowledgements

• The following provided valuable information for this presentation:
 – Gary Fisher – Alberta Research Council
 – Jenny Bean – Alberta Research Council
 – Mike Anderson – Syncrude Research
 – Jim Grauman – Titanium Metal Corporation
References

